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A TABLE OF QUINTIC NUMBER FIELDS 

A. SCHWARZ, M. POHST, AND F. DIAZ Y DIAZ 

ABSTRACT. All algebraic number fields F of degree 5 and absolute discriminant 
less than 2 x 107 (totally real fields), respectively 5 x 106 (other signatures) 
are determined. We describe the methods which we applied and list significant 
data. 

1. INTRODUCTION 

In the last few years several extensive lists of number fields were calculated. 
In particular, we mention the calculation of fourth-degree fields up to a discrim- 
inant bound of one million by D. Ford, J. Buchmann, and the second author 
[2, 3, 5]. The huge amount of computation time showed that similar tables for 
primitive fields in higher dimensions would require refined techniques. A first 
attack on the totally real quintic case was done by the third author about 2 years 
ago [4]. At the same time the determination of the minimum discriminant for 
totally real octic fields by Pohst, Martinet, and Diaz y Diaz [11] was successful 
because of much better estimates for several coefficients of a. generating poly- 
nomial. In this paper we take up those ideas and apply them to fifth-degree 
polynomials of arbitrary signature. 

In ?2 we describe the generation of the polynomials and develop new esti- 
mates for their coefficients for each of the three possible signatures. In ?3 we 
discuss the processing of those polynomials. Their discriminants are calculated 
integrally; bounds on the required number of arithmetical operations and on 
the size of the occurring integers are also given. At the same time polynomials 
of incorrect signature are removed. Then reducible polynomials are eliminated. 
All remaining ones are generating polynomials for number fields F. We com- 
pute an integral basis for F (hence, also the discriminant dF of F) with the 
ROUND-2 algorithm of Zassenhaus [18]. Redundant fields (i.e., those which 
are isomorphic to a field which was already obtained) are removed with the help 
of the isomorphy test of [10]. Finally, the Galois group of F is computed with 
the resolvent method. In the last section we present various numerical data. We 
found a total of 

* 22 740 totally real fields with discriminant less that 2 x 107, 
* 79 394 fields with 2 complex conjugates and discriminant larger than 

-5 x 106, 
* 186906 fields with 4 complex conjugates and discriminant less than 

5x 106. 

All data can be obtained from the second author. 
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2. GENERATION OF POLYNOMIALS 

Let F be an algebraic number field of degree n and discriminant dF, and 
let 6F be the ring of integers of F . Let F = Q(p) for a root p of a monic 
irreducible polynomial fp(t) E Z[t] with deg(fp) = n. Then fp(t) is the char- 
acteristic polynomial of p, and we denote its zeros in C by p = p(l)- ... . p(n) . 

As usual, we choose p(l), ..., p(ri) E Ri and p(rl+l), ..., p(rl+r2) E (C\R with 
p(rl+r2+j) = p(rl+j) for 1 < j < r2, so that n equals r1 + 2r2 . For any element 
x E F, say x = Z1 qip'- (qi E , 1 < i < n), the conjugates of x are 
given by x(j) := E1n qjpiw(j 

We introduce the function 
n 

T2: F RO: x I-4 Z X(i)12. 
i=l 

With x E F represented by a fixed basis, T2(x) becomes a positive definite 
quadratic form in the coefficients. Also, we need the kth power sum of x, 

n 

Sk: Fx - R: x ZX(i)k (k E Z). 
i=l 

We note that for x E 6F and k > 0 the kth power sum of x is a rational 
integer. Newton's relations 

k-i 

Sk + aiSk-i + kak = 0 (1 < k < n) 
i=l 

allow us to calculate the power sums from the coefficients of the characteristic 
polynomial fx(t) = tn + al tn-I + * * * + an E Z[t] of the algebraic integer x E F, 
and vice versa. Hence, we can easily estimate the coefficients of fx(t) if we 
have bounds for the power sums of x E F. Additionally, we note that 

S1 = (-l)nan-I 

Improving methods in earlier publications, for example [2, 4, 6, 8, 9], we use all 
our information about the values of Si, S2 and an to determine good bounds 
for Sk (k E {3, .* , n - 1, -1 }) . Thus, the number of generated polynomials 
is reduced drastically. Without these improved bounds it would not be possible 
to compute such large sets of algebraic number fields in reasonable CPU-time. 

In the sequel, F = Q(p) denotes an algebraic number field of degree five with 
prescribed signature (ri, r2) . For an upper bound B on the absolute value of 
the discriminant of F we choose B = 2 x 107 for ri = 5, and B = 5 x 106 
otherwise. For each of the three signatures we construct a set M of monic fifth- 
degree polynomials such that any quintic number field F of correct signature 
and of absolute discriminant ldFI < B contains an integer p (e F\Q) whose 
characteristic polynomial fp(t) = t5 + a, t4 + a2t3 + a3t2 + a4t + a5 E Z[t] is 
contained in M. We proceed in analogy to [6, 9]. 

Proposition 2.1. Let F be an algebraic number field of degree n = 5 with 
discriminant dF d ldFl < B. Then there exists an algebraic integer p in F with 
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F = Q(p) and characteristic polynomial fp(t) satisfying 

al E {O, 1, 2} 

and 

T2(P) ? U2 +5 ) 

As a consequence, we also get bounds for the coefficients a2, a5 of the char- 
acteristic polynomial of that element p. Newton's relation a2 = (a2- S2)/2 
immediately yields 

a2 > (a 2- U2)/2. 

Applying the Cauchy-Schwarz inequality to the vectors (p(l), ... , p(n)), (1 
1), we obtain a2< 5(U2 + S2)/2; hence, 

a2<(U2+3al2)/2. 

The inequality between arithmetic and geometric means implies 

< la5I= fIJp() < ( 

j=1 

Remark 2.2. For totally real fields F, i.e., r, = 5, we have T2(p) = S2(P) > n 
[15] and therefore much better upper bounds 

1 2 1 5 S a2 < ?al - and Ia5l < 

Estimates for a3, a4 are derived from bounds for S3, S4, S_ 1, and the latter 
are obtained by calculating global maxima and minima of the functions 

n 

Sk: C5 -- : XE Xik 

i=l 

for k E {3, 4, -1} and fixed values of SI, S2 and a5 and under the additional 
constraint 

T2(x) :x= IX2 +*** + 1x512 < U2. 

These extrema are determined by the Lagrange multiplier method. 
In the sequel we assume that SI, S2, a5 E Z and U2 E R>' are fixed. 

2.1. Polynomials with signature r1 = 5 and r2 = 0. We determine extrema of 
the functions 

n 

Sk: R5 -- R: X X, k E {3, 4, -1}, 
i=l 

under the restrictions 

gl(X) = XI +X2 +X3 +X4 +X5-S1 = O, 

g2(X) = X12 + X2 +X2 + X42 +X2 _ S2 = 0. 

93(X) = XI1X2X3X4X5 + a5 = 0. 
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Because of T2(x) = S2(x) for all x E R5, we do not need the side condition 
T2(x) < U2 in this case. The set G:= {x e ]R51gj(x) = 0, j = 1, 2, 3} is com- 
pact. Hence, Sk attains a maximum and a minimum in G for k E {3, 4, -1 } . 
The following proposition is a consequence of Lagrange's multiplier method (see 
[13]). 

Proposition 2.3. (a) Each of the functions S3 and S_1 has a global maximum 
and a global minimum on the set G at a vector x = (x1, ..., x5) whose coor- 
dinates satisfy 

xI = X2 = x3 or xI = X2 A x3 = x4. 

(b) The function S4 has a global maximum and a global minimum on the set 
G at a vector x = (xl, ... , x5) whose coordinates satisfy 

X1=X2=X3 or X1=X2AX3=X4 

or, in case S1 $0, 

X= X2 = SI and x1, x3, x4, x5 are pairwise distinct. 

We thus must consider three cases for which we calculate all x E G subject 
to one of the conditions of the last proposition. We give a short example how 
to determine all vectors x E G with xI = X2 = x3. Eliminating x4 and x5 
from the system of equations 

3x, + X4 + X5 - SI = 0, 

3X12+X42+X52-S2 =0, 

x13X4X5 + a5 = 0 

we get 

X15 IS 25X14 + 
I 

(s12 - S2)X 3 + Ia5 = ?. 5 1 4 1 _ 
1. ~ . 3 1 

For every real solution xl of that equation we compute x5 from 

X5 + (3x1-S1)X5 + 6X-3Sx1+ 2(S+ -S2)=0 

and, finally, x4 from 
x4 = S1 - 3x, - x5. 

For all solutions x E G we compute Sk(x) for k E {3, 4, -I}. In the other 
two cases we proceed analogously. 

The required extrema are among the Sk-values for the finitely many x E G 
obtained. All polynomials for xl are of degree at most five. Using the bounds 
for S3 we can estimate a3 by Newton's relations. The bounds for S4 and 
S-1 yield estimates for a4. Additional bounds from [6, 8] are used to possibly 
further reduce the ranges for a3 and a4 . 

2.2. Polynomials with signature r, = 3 and r2 = 1. If we denote the real 
roots by xI , X2 x3 and the complex roots by X4 ? ix5 with X4, X5 e XR, then 
we have to search for extrema of the real functions 

S3(x) :=X3 + X23 + x3 + 2(x43 - 3x4X2), 

S4(x) :=x4 + X2 X44 + 2(x4 - 6x2x2 + x4), 
1 1 1 _ _ _ _ 

S_1(x):= - + - + - + 2 X 
xI X2 X3 X42 2+X52 
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The constraints are 

g1(x) = xI + x2 + x3+ 2x4-SI = O, 

g2(X) = X + X + X32+ 2(X4-X5)-S2=, 

g3(X) = xIx2x3(x,2 + x2) + a5 = 0, 
g4(x) =xl +x22 +X32 +2(x4+x5)- U2 < 0. 

We define sets 

G:= {xxe ER5g4(x) < OA gj(x) = 0, j = 1, 2, 3}, 

G3 := {x E R15jg1(x) = 0, j = 1, 2, 3}, 

G4 := {x E R151gj(x) = 0, j = 1, 2, 3, 4}. 

Since G is compact, we have global extrema in G. If x E Ri5 is an extremum, 
then it is either an element of G3 which satisfies g4(x) < 0, or it is an element 
of G4. So we must determine all local extrema in G3 and G4 . Again, we apply 
the method of Lagrange multipliers and obtain the following proposition ([13]). 
Proposition 2.4. (a) Each of the functions S3 and S_I has its local extrema in 
the set G3 only at points x = (xI, ... , x5) which satisfy one, of the conditions 

(1) XI =X2=X3, 

(2) xl = x4 A X5 = O, 
(3) xl = x2 Ax5 = O. 
(b) The function S4 has its local extrema in the set G3 only at points x = 

(xI, ... , X5) which satisfy either one of the conditions (1)-(3) of (a) or, in case 
S1 : 0, one of the conditions 

(4) xl =x2=S1 Ax1 xAX3 Ax5 $0, 
(5) X4 = SI A X5 = 0 A x1, X2, X3, X4 pairwise distinct. 

There are only finitely many local extrema. The degree of the polynomials 
whose roots we must compute is at most five. We only consider solutions x E Ri5 
with g4(x) < 0. 

To determine the extrema in G4 is somewhat more difficult, because we do 
not have similar conditions for the coordinates of a solution x as in the totally 
real case. Thus, it is necessary to calculate Lagrange multipliers explicitly, if 
the Jacobi matrix 

J(x) (Ogjx.) 
(Oxj ) l<i<5,1l<j<4 

has rank four. Because of S2 < U2, we have 

0 X52= (U2 - S2) 

in G4. 

Remark 2.5. If X5 $ 0 and xI, x2, X3 are pairwise distinct, then the rank of 
J(x) is four. 

Hence, if J(x) is not of maximal rank, then two of the coordinates xl, x2, X3 
must be equal, and without loss of generality we can assume xI = x2 . Comput- 
ing resultants of the polynomials gj(xI, XI, X3, x4, 4(U2 - S2)) (1 < j < 3), 
we obtain an equation of degree ten for X4. 

In the sequel we assume that J(x) has rank four. 
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Determining the extrema of S3 by the Lagrange multiplier method yields 
Al A-,4 E R subject to 

3X2 + Al + 222X1 -3 5 + 224X1 = 0, 
X1 

3X2 + AI + 222x2 - A3 5 + 224X2 = 0, 
X2 

3X32 + A1 + 2A2x3 - A3a5 + 224X3 = 0, 
X3 

~~ 2a5 +2)~~4x4=O, 3(X2 _X2) + Al + 222X4 -A2X 2 + 224X4 = 0, 
X4 + x5 

a5 
-6x4 - 2A2 - 3 2a5 + 2A4 = O- -6x4-2,~2- x 2+ 2+2~O 

x 5 
Eliminating X1, X2, X3, we obtain 

3 

0 ~~~X4 + X5 

A4 = 3X4 - 
3 

((2 52) + SI) 

A2 = - (4 - 
3 

(SI - 2X4), 

2 
Al = 2-((SI - 2X4)2S- 2(x4 -52 

These results are inserted into the fourth equation above to obtain an equation 
of degree six in x4. For the functions S4 and S-1 we proceed similarly and 
get equations of degree seven in x4 in each case. 

Having calculated x4, we form resultants of the polynomials 

gj(xl, X2, X3, X4, X5), 1 < j < 3, 

in the variables xl and x2 . This yields an equation of degree three for X3. 

2.3. Polynomials with signature r, = 1 and r2 = 2. We apply the same 
method as before. We denote the zeros of a generating polynomial by xl ,x2 ? 
iX3, X4 ? iX5. Hence, we need to determine maxima and minima of the func- 
tions 

S3(x) X43 + 2(X3 - 3X2X2) + 2(X3 - 3X4X2), 

S4(x) X14 + 2(X4 - 6X2X2 + X4) + 2(x44 - 6X42X2 + X4), 

S_I(X) =IX + 2 X2 + X2 + X42 5 XI x2 2x 2 x 2+x 

subject to the restrictions 

gl(x) x1 + 2X2+ 2X4 - SI = 0, 

g2(X) :=xl2 + 2(x-x32) + 2(x42-x2) -S2 = , 

g3(X) :=X (X2 + X2)(X42 + X2) + a5 = 0, 

g4(X) :=X+2(x2 + X2) +(X2 + X2) - U2 0. 

Let the sets G, G3, and G4 be defined as in the preceding case. For the extrema 
in G3 we get the following result (see [1 3]). 
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Proposition 2.6. (a) Each of the functions S3 and S_I has its local extrema in 
the set G3 only at points X = (XI,..., X5) which satisfy one of the conditions 

(1) X3 = X5 = O, 
(2) x1 = x2 A X3 = O, 
(3) X2=x4AX3=xX5 
(b) The function S4 has its local extrema in the set G3 only at points x = 

(X1, ... , X5) which satisfy either one of the conditions (1)-(3) of (a) or, in case 
SI 5 0, the condition 

(4) X1 x2=S1 AX3=OAX5$4O. 

Again we obtain only finitely many local extrema. Solving the corresponding 
system of equations we must calculate the zeros of polynomials of degree at 
most five. 

For finding the global extrema in G4 we have to check if the Jacobi matrix 
has rank four. For this, the following remark is helpful. 

Remark 2.7. For X2 4 x4, x22 + X3 5 X4 + X5 and X3 5 O$ X5, the rank of 
the Jacobi matrix is four. 

The cases X2 = X4 or x2 + x3 = X4 + X5 or x3 = 0 are not difficult to 
handle. We notice that X3 and x5 cannot both be zero. If the rank of the 
Jacobi matrix is four, then we compute the Lagrange multipliers as functions 
of xl and obtain a polynomial equation for xl . We note that in this case the 
degree can become as large as 17. 

3. PROCESSING OF GENERATED POLYNOMIALS 

Since the set M of polynomials generated by the ideas of the preceding 
section turns out to be quite large for each signature (see ?4), the methods of 
this section should be really fast. In a first step we compute the discriminant 
and the signature of each polynomial simultaneously. For a monic nth-degree 
polynomial f(t) E Z[t] we define the quadratic form 

qf(xl, *--, xn) = Si+j-2XiXj = XtrQfX 

l<i,j<n 

with coefficient matrix 
so SI S2 .. Sn- I 

SI S2 

Qf= S2 = 

Sn-1 ... ... ... S2n-2' 

i.e., the coefficients are the power sums of the zeros of f(t). We note that 
det(Qf) is the discriminant of f (t) and that the number of real roots of f(t) 
equals the difference of the numbers of positive and negative eigenvalues of Qf 
[7]. The latter are easily computable by an application of the following lemma 
from [13]. 

Lemma 3.1. Let M be a real symmetric n x n-matrix, and det(Mi) 54 0 for 
Mi = (mjk)l<j,k<i (1 < i < n). Then the number of negative eigenvalues of M 
is equal to the number of sign changes in the sequence 1, det(MI), ... , det(Mn). 



368 A. SCHWARZ, M. POHST, AND F. DIAZ Y DIAZ 

We remark that in our case det(Qf) $A 0, because otherwise we can discard 
f (t) immediately, and therefore we can always achieve that the principal minors 
of Qf are not zero. Hence, using a Cholesky-type method [9] for evaluating the 
determinant of Qf, we obtain the signature of f(t) at the same time for free. 
The following proposition from [13] allows us to do all calculations with ratio- 
nal integers. The advantage of operating exclusively with integers was already 
discussed in [1]. 

Proposition 3.2. Let M = (m))1<i,j<n be a real symmetric n x n-matrix with 

det(M) :A 0, and let q(x) := In j=l m(j)xjxj be the corresponding quadratic 
form. Then for each k E {O, ..., n - I} the form q(x) is equivalent to the 
quadratic form 

k M(k) + 1 E m() xjx1, 

mi- Xi- mkk i,j=k+1 

defining m(?) :=1 and 

m(k)_ mijmkj1 ) mk1) mk k-1 ) 
ij ~~~~(k-i1) 

mk-1, k-l 

for k > 0 andk < i, j < n. If we have Me7Znxn, then also 

Mk) E Z forO<k<n- 1, k<i,j<n. 

We remark that the principal minors of M satisfy 

det(Mk) = m(k1) = m k) (1 < k < n). 

The following algorithm is immediate. 

Algorithm 3.3. (Computation of polynomial discriminant and signature) 
Input. Degree n of the polynomial f and the polynomial coefficients. 
Output. Polynomial discriminant D(f) and the number of real roots of f in 
case D(f)5O. 

(1) (Initialization) 
Compute the power sums Sk for 0 < k < 2n - 2 via Newton's relations 
and initialize the Hankel matrix Qf = (mij)1<i,j<n - (Si+j-2)1<i,j<n - 
Set s - 0 and d +- 1. 

(2) For k= 1 to n - 1 do 
If mkk = 0 then 

If there is an index 1 with k < l < n and ml, 54 O, then 
interchange mki and mli for k < i < n and then 
interchange mik and mil for k < i < n. 

Else if mij = 0 for all i (k < i < n) and there is an index 1 with 
k <l < n and mkl $A 0 then 

set mki - mki + mli for k < i < n and then 
set mik - mik + mil for k < i < n. 

Else 
set D(f) +- 0 and terminate. 

For i=k+1 to n do 
Set Mij +- (mkkmij - mikmkj)/d for i < j < n. 
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Set mki- 0 for k+ 1 < < n. 
Set mji mij for k < i < n - 1 and i + 1I < < n. 
Set s +- s + sign(mkk) * sign(d) and d - mkk. 

(3) Set D(f) (- m s n - s + sign(mnn) * sign(d) and terminate. 

Regarding the complexity of the algorithm we get (see [13]): 

Proposition 3.4. Let f(t) = tn + a, tn- + ... + an E Z[t] be a polynomial of 
degree n > 2 and define a:= max({lail I1 < i < n} u {1}). Then 

(a) Algorithm 3.3 requires at most 

4(n - 1)2 + 2n(n - 1) + 2n(n - 1)(n + 1) + 2 = 0(n3) 

arithmetical operations. 
(b) The absolute values of the intervening integers are bounded by 

23(n-1)(a+ 1)4(n-1)2 

This method of computing the polynomial discriminant and the signature 
simultaneously is very fast in practice. Comparisons with the PARI system 
showed that for our polynomials, Algorithm 3.3 is about ten times faster. 

After the calculation of all polynomials of the signature under consideration 
we must check them for irreducibility. Factoring them modulo small prime 
numbers and comparing the degrees of potential factors often proves irreducibil- 
ity in a fast way. If proper factors can still exist, we easily obtain estimates for 
their coefficients and test all remaining candidates. 

The irreducible polynomials then generate fields of correct signature. Next 
we must check whether the field discriminant lies within the given bounds. We 
use the Dedekind criterion (see [12], for example) to detect index divisors. 
If there are none, then we know that the equation order is maximal and the 
discriminant of the polynomial coincides with the field discriminant. In the 
remaining cases we compute an integral basis of the corresponding maximal 
order by a specialized version of the ROUND-2 algorithm of Zassenhaus [18]. 

Our methods sometimes yield several generating polynomials for one field. 
Hence, a final task is to reject all redundant ones. An easy test to check whether 
several polynomials generate isomorphic fields is given in [10]. 

3.1. Computation of Galois groups. As a prerequisite we list all transitive 
subgroups of the symmetric group S5, and for each of them the frequency 
of cycle distributions. For example, " 15 x (2, 2, 1)" means that the group 
contains 15 elements which decompose into two cycles of length two and one 
cycle of length one. 

S5 1 x (1, 1, 1, 1, 1), 10 x (2, 1, 1, 1),15 x (2, 2, 1),20 x (3, 1, 1), 
20 x (3, 2), 30 x (4, 1), 24 x (5) 

Hol(C5) I x (1, 1, 1, 1, 1), 5 x (2, 2, 1), 10 x (4, 1), 4 x (5) 
A5 1 x(l, 1, 1, 1, 1), 15x(2,2, 1),20x(3, 1, 1),24x(5) 
D5 1 x(l, 1, 1, 1, 1),5x(2,2, 1),4x(5) 
C5 1 x(l, 1, 1, 1, 1),4x(5) 
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The groups include each other in the following way: 
S5 

A5 

Hol(C5) 

D5 

C5 

To decide which subgroup of S5 is the Galois group of a given monic irreducible 
polynomial f(t) E Z[t], we use the following criteria which are contained in 
(or easily deducible from) [17, pp. 202-204]. 

Lemma 3.5. Let f(t) E Z[t] be a monic irreducible polynomial of degree n, and 
let 1f C S, be the Galois group of f . Let p be a prime number not dividing 
the discriminant of f, and let f _ f ... fr mod p be a congruence factorization 
into monic irreducible polynomials. Then 1f contains an element Xt = 7. 7tr, 
where the ij are disjoint cycles of length deg(fj) (1 < i < r). 

Lemma 3.6. Let f(t) be as in the preceding lemma. If 1f contains cycles of 
length 2 and deg(f), respectively, then 1f is the symmetric group S, . 

Lemma 3.7. Let f(t) be as in Lemma 3.5 but of prime degree p > 3. If f has 
exactly two nonreal roots, then its Galois group 1f is the symmetric group Sp. 
Lemma 3.8. Let f(t) be as in Lemma 3.5. Then its Galois group 1f is con- 
tained in the alternating group A, if and only if the discriminant of f is a 
square in 7Z. 

Lemma 3.9. Let f(t) be as in Lemma 3.5 but of degree n = 5. If its Galois 
group 1f is the cyclic group C5, then f has five real roots. 

Hence, we decompose a given monic irreducible polynomial f(t) modulo 
pZ[t] into its prime factors for a few (usually not more than 10) small prime 
numbers p. From these results we can already guess the corresponding Galois 
group in most cases. For the remaining ones we use indicator functions (see 
[12, 16]) which tell us whether 1f is contained in Hol(C5), C5, respectively. 
Let 

91 (XI, ... X5) 
x5)~~~~~~~~~~~~~~~~~~~~) 

(X1X2 + X2X3 + X3X4 + X4X5 + X5X1 - XX3-X3X5-X5X2-X2X4-X4X1) 

and V1 be a full set of representatives of S5/Hol(C5), for example, 

V1 = {(1), (12435), (15243), (12453), (12543), (12)(34)}. 

Assume that the values g1 (xT(I), ..., XT(5)) are distinct for z E V1 . Then the 
Galois group 1f is contained in Hol(C5) if and only if y = g (x7(1), ... , X(5)) 
is a rational integer for some Xt E V1. 

Similarly, we define 

92(XI * * *, X5) := X1X2 + X2X3 + X3X42 + X4X5 + X5X12 
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and 

V2 := {(1), (12)(35)}. 

Assume that the values g2(x,(l), ... , XT(5)) are distinct for T E V2. Then 
the Galois group 1f is contained in (hence equal to) C5 if and only if y = 
92 (XU(1,... , X (5)) is a rational integer for some Xt E V2. 

4. NUMERICAL RESULTS 

All computations were carried out on Apollo workstations (CPU Motorola 
68020, 68030, 68040). The use of the software package KANT [14] was abso- 
lutely essential. 

4.1. Totally real fields with dF < 20000000. According to Proposition 2.1, 
we have to compute all characteristic polynomials of algebraic integers p with 
T2(p) < 64.50. Our method generates 110476592 polynomials, 35758669 
of which are totally real. There remain 22 740 nonisomorphic fields. In Table 
1 we list the first 50 field discriminants and the coefficients of a corresponding 
generating polynomial in each case. An integral basis is always a power basis 
for these generators. 

Next, in Table 2 (next page), we consider the distribution of the fields with 
respect to their Galois group. Among all 22740 fields, 22676 have symmetric 
Galois group S5 (99.72%). We list the remaining 64 fields. 

TABLE 1 
No dF f No dF f 

1 14641 1 -4 -3 3 1 26 170701 1 -6 0 4 -1 
2 24217 0 -5 1 3 -1 27 173513 2 -5 -3 3 1 
3 36497 0 -6 1 4 1 28 176281 1 -5 -3 4 1 
4 38569 0 -5 0 4 1 29 176684 0 -6 1 5 1 
5 65657 1 -7 -1 4 -1 30 179024 0 -8 0 6 2 
6 70601 1 -5 -2 3 1 31 180769 0 -7 4 2 -1 
7 81509 0 -6 1 5 -2 32 181057 1 -7 -2 3 1 
8 81589 0 -8 4 2 -1 33 186037 1 -6 -2 5 2 
9 89417 2 -7 -4 2 1 34 195829 2 -5 -6 7 -1 

10 101833 1 -5 -5 2 1 35 202817 2 -5 -4 2 1 
11 106069 2 -7 -2 3 1 36 205225 1 -6 -3 7 3 
12 117688 1 -5 -4 4 1 37 207184 1 -6 -2 7 1 
13 122821 2 -4 -4 3 1 38 210557 1 -6 -4 8 1 
14 124817 0 -7 6 2 -1 39 216637 0 -7 2 3 -1 
15 126032 0 -6 0 6 2 40 218524 2 -4 -5 3 1 
16 135076 2 -7 -1 4 -1 41 220036 2 -11 5 2 -1 
17 138136 1 -6 -3 4 2 42 220669 1 -7 -5 3 2 
18 138917 0 -6 2 3 -1 43 223824 1 -8 2 3 -1 
19 144209 0 -6 1 6 1 44 223952 0 -6 2 6 -2 
20 147109 2 -4 -5 3 2 45 224773 1 -6 -2 7 -2 
21 149169 0 -6 3 4 -1 46 230224 2 -4 -6 3 2 
22 153424 1 -6 -2 3 1 47 233489 1 -6 -1 5 1 
23 157457 2 -4 -5 4 1 48 236549 1 -6 -7 2 1 
24 160801 1 -5 -4 3 1 49 240133 2 -6 -4 2 1 
25 161121 1 -6 -3 5 -1 50 240881 1 -7 -6 7 -1 
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TABLE 2 
Galois group Hol(C5) 

No dF f No dF f 

1 2382032 0 -9 4 17 -12 9 11122069 2 -12 -24 8 23 
2 2450000 0 -10 0 20 10 10 11250000 0 -20 0 80 16 
3 3698000 1 -8 -6 13 9 11 15051125 1 -13 -1 23 9 
4 6725897 1 -8 -3 13 -3 12 16200000 0 -15 0 45 30 
5 6889792 1 -11 -9 1 1 13 19120976 1 -14 -6 3 1 
6 6903125 0 -10 0 20 9 14 19503125 0 -10 0 20 7 
7 7129088 1 -12 -4 18 2 15 19827925 1 -24 -56 29 104 
8 8804429 2 -18 22 -2 -3 . 

Galois group A5 

No dF f No dF f 
1 3104644 1 -11 -1 12 4 10 11812969 0 -25 11 7 -1 
2 5184729 2 -7 -11 11 11 11 12271009 2 -10 -9 9 -1 
3 6160324 1 -15 15 6 -4 12 13060996 1 -21 -48 -2 38 
4 6180196 2 -15 -12 2 2 13 14584761 2 -13 -2 34 -19 
5 7017201 0 -17 30 -4 -7 14 15784729 2 -9 -13 13 7 
6 7409284 2 -19 17 22 -25 15 16386304 2 -22 -40 57 -2 
7 8305924 1 -9 -8 8 4 16 16662724 1 -17 -13 52 52 
8 10791225 1 -14 1 49 -41 17 18088009 2 -10 -23 -6 4 
9 11744329 2 -15 -31 6 5 18 19096900 2 -21 -35 6 9 

Galois group D5 

No dF f No_ dF f 
1 160801 1 -5 -4 3 1 14 9790641 1 -11 0 21 -9 
2 667489 1 -6 -5 3 1 15 10118761 2 -11 -15 22 17 
3 1194649 0 -8 3 10 -4 16 10582009 1 -15 13 13 -11 
4 1940449 1 -7 -6 3 1 17 12852225 1 -28 17 21 -9 
5 2042041 2 -12 -3 12 4 18 12967201 2 -17 7 13 1 
6 2692881 1 -10 -1 21 -9 19 15429184 1 -28 32 27 -1 
7 3083536 2 -10 -14 21 16 20 15976009 1 -15 9 21 -7 
8 3598609 1 -13 -8 27 -1 21 16785409 1 -17 -41 -18 9 
9 3984016 0 -9 4 10 -4 22 18671041 1 -10 -9 3 1 

10 4330561 2 -11 -28 -6 9 23 18948609 1 -23 -15 120 -9 
11 4635409 1 -8 -7 3 1 24 18983449 0 -19 32 9 -28 
12 8456464 2 -15 -4 36 -16 25 19722481 1 -23 19 14 1 
13 9740641 1 -9 -8 3 1 26 19749136 1 -25 29 24 2 

Galois group C5 

No dF f 
1 14641 1 -4 -3 3 1 
2 390625 0 -10 5 10 1 
3 923521 1 -12 -21 1 5 
4 2825761 1 -16 5 21 -9 
5 13845841 1 -24 -17 41 -13 

There are 61 discriminants below 20000000 belonging to two nonisomor- 
phic fields, namely, 
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1810969 7333232 11790544 13520196 14600416 17946025 18908613 
1891377 7834576 12055149 13898797 14731145 17946064 19303645 
3060944 8760289 12096169 14009328 15873344 18038480 19444016 
3350673 9262117 12174592 14118473 15910101 18371721 19595088 
4569808 9344997 12329168 14186448 16209381 18536121 19630237 
4602229 10782801 12500560 14282192 16509232 18623952 19720013 
4641232 10796517 12965184 14313136 16959193 18640592 19984208 
6470593 11022656 13072837 14321232 17362512 18652329 
6499197 11160412 13075749 14433201 17515184 18871504 

All other fields are uniquely determined by their discriminant. 

4.2. Fields with signature r1 = 3 and r2 = 1 and IdF I < 5000000. Applying 
Proposition 2.1, we compute all characteristic polynomials of algebraic integers 
p with T2(p) < 45.98. We get 502250482 polynomials, 248231495 of 
which are of correct signature. There remain 79 394 nonisomorphic fields with 
a discriminant of absolute value below 5 000000. All of them have Galois 
group S5 according to Lemma 3.7. 

In Table 3 we list the first 50 fields, each of which has a power integral basis. 

TABLE 3 

No dF f No dF f 
1 -4511 0 -2 1 0 -1 26 -15919 0 -3 2 0 -1 
2 -4903 1 -2 1 1 -1 27 -16816 1 4 0 -3 -1 
3 -5519 0 -3 1 1 -1 28 -17151 0 -1 0 -2 1 
4 -5783 1 -3 1 2 -1 29 -17348 1 -2 1 2 -2 
5 -7031 0 -1 1 -1 -1 30 -18063 1 -2 -1 -1 -1 
6 -7367 0 -4 1 2 -1 31 -18463 0 -3 2 2 -3 
7 -7463 2 0 -1 -2 -1 32 -18583 1 -2 -1 -1 1 
8 -8519 1 -1 0 -1 -1 33 -18839 1 -3 0 1 -1 
9 -8647 2 -1 0 -2 1 34 -19015 0 -2 1 -2 1 

10 -9439 1 -1 -1 -2 -1 35 -19951 1 1 3 -4 1 
11 -9759 2 -1 0 2 -1 36 -21191 1 0 1 -3 1 
12 -10407 1 -3 0 3 1 37 -21227 1 0 4 3 -2 
13 -11119 2 1 -1 -3 -1 38 -22331 1 -4 0 2 -1 
14 -11243 1 0 0 -2 -1 39 -22424 0 -2 1 -1 -1 
15 -11551 1 -3 2 1 -1 40 -22448 1 -2 2 1 -1 
16 -12447 0 1 1 -3 1 41 -22583 0 0 1 -2 -1 
17 -13219 0 0 2 -1 -1 42 -22687 1 1 1 -2 -1 
18 -13523 2 -3 0 3 1 43 -22935 0 -1 5 3 -3 
19 -13799 1 -1 -2 -3 -1 44 -23103 1 0 -1 -3 -1 
20 -13883 1 -2 0 1 -2 45 -23119 0 -3 0 0 1 
21 -14103 2 -1 -2 -2 -1 46 -23339 1 0 -2 -2 1 
22 -14631 1 -1 1 0 -3 47 -23679 2 0 -1 -2 -3 
23 -14891 2 -1 0 3 -.1 48 -23831 0 -3 2 4 1 
24 -14911 1 -2 1 3 -1 49 -23891 1 -3 1 3 -2 
25 -15536 2 0 0 0 -2 50 -24299 1 -1 -3 -1 2 

There are various discriminants for which nonisomorphic fields exist. Ta- 
ble 4 gives a short account on this phenomenon. If there are more than 10 
different discriminants for which ,u nonisomorphic fields of that discriminant 
occur (which happens to be the case for ,u = 2, 3), we only list the 10 largest 
discriminants. 
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TABLE 4 
number of 

nonisomorphic 
fields 2 3 4 6 

discriminants -28976 -428976 -2025648 -1673136 
-100656 -447232 -2170800 
-107467 -490288 -2711232 
-112919 -643127 -3223600 
-125391 -646704 -3539376 
-159196 -818096 -3830976 
-171184 -853456 -3912624 
-174608 -956623 
-195203 -1051056 
-210352 -1068336 

total 2139 106 7 1 

TABLE 5 

No dF f No dF f 
1 1609 0 -1 1 1 -1 26 4897 0 1 1 -1 -1 
2 1649 1 -1 0 1 -1 27 5025 1 -1 0 -1 1 
3 1777 0 -2 1 2 -1 28 5164 1 -1 0 2 -1 
4 2209 0 -1 2 -2 1 29 5437 2 0 -1 -1 -2 
5 2297 0 1 1 1 1 30 5501 0 0 2 3 1 
6 2617 0 1 2 0 1 31 5584 1 0 0 1 -1 
7 2665 0 1 0 -2 1 32 5653 1 0 0 2 1 
8 2869 0 0 0 -1 1 33 5753 1 -1 -2 -1 -1 
9 3017 0 -1 0 0 1 34 5864 1 1 -2 -2 -1 

10 3089 0 -1 0 2 1 35 5913 1 -1 2 -1 1 
11 3233 0 0 1 0 1 36 6241 1 1 2 3 1 
12 3369 0 1 1 -1 1 37 6449 0 3 1 1 1 
13 3857 0 -1 1 -1 1 38 6581 0 0 2 0 1 
14 3889 1 0 1 1 1 39 6757 1 0 -3 -2 -1 
15 4169 0 2 1 2 1 40 6793 1 0 1 -1 1 
16 4261 0 0 2 -2 1 41 7096 0 0 1 1 -1 
17 4409 1 -1 0 1 1 42 7177 1 0 3 1 -3 
18 4417 0 1 2 2 1 43 7265 1 1 -2 -1 -1 
19 4429 0 -1 2 -1 1 44 7333 2 0 -4 -3 -1 
20 4432 1 0 -2 -1 -1 45 7373 1 -2 0 2 1 
21 4477 0 1 0 1 1 46 7376 1 -2 0 3 -1 
22 4549 0 2 2 1 1 47 7672 1 1 0 -2 1 
23 4597 0 1 2 -1 1 48 7684 0 -1 1 0 1 
24 4757 1 2 1 2 1 49 7717 2 0 0 2 -1 
25 4817 2 1 2 2 1 50 7909 1 -2 2 -2 1 

4.3. Fields with signature r1 = 1 and r2 = 2 and dF < 5000000. We com- 
pute all characteristic polynomials of algebraic integers p with T2(p) < 45.98. 
This yields 670 725 968 polynomials, 534 326 207 of which have exactly one 
real zero. There remain 186 906 nonisomorphic fields of a discriminant below 
5 000000. We list in Table 5 the smallest 50 fields, all of them with a power 
basis as integral basis. 

There are 81 fields with Galois group Hol(C5), 258 fields with A5, and 
129 fields with D5. The group C5 cannot occur as Galois group. For every 
possible Galois group we present the field of smallest discriminant. In each case 
an integral basis is a power basis. 
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Group dF f 
S5 1609 0 -1 1 1 -1 

Hol(C5) 35152 1 2 4 1 1 
A5 18496 1 0 -2 -2 -2 
D5 2209 0 -1 2 -2 1 

Table 6 gives some information on discriminant values for which nonisomor- 
phic fields occur. If there are more than 10 different discriminants for a fixed 
number of nonisomorphic fields, only the 10 smallest discriminants are listed. 

TABLE 6 
number of 

nonisomorphic 2 3 4 5 6 7 9 
fields 

discriminants 16757 17744 225872 721872 1672272 2432592 4050000 
20432 48592 258768 1153872 2016576 4081104 
34129 206928 514512 1333584 2059344 
37584 213840 587088 1350864 2245968 
37892 214272 640629 1664976 2546640 
40912 216432 752976 1710288 3089664 
45009 223737 880848 1862352 3707856 
47797 251984 939600 2348496 4482000 

148629 254148 1048896 2415312 
1 49744 255312 1057104 2592000 _ 

total 1 9333 756 103 29 8 2 1 
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